Методы контроля за состоянием загрязнения окружающей среды

Сегодня рассмотрим материал на тему: "Методы контроля за состоянием загрязнения окружающей среды", собранный из ведущих авторитетных источников. На все вопросы вам готов ответить дежурный юрист.

Методы контроля загрязнения окружающей среды

ПЕРСПЕКТИВНЫЕ МЕТОДЫ КОНТРОЛЯ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Современные методы контроля химических веществ, загрязняющих окружающую среду, — это, по сути, Физико-химические методы. Иногда их объединяют термином “инструментальные методы анализа”. Данная тема огромна, поэтому мы рассмотрим лишь наиболее перспективные из физико-химических методов, оптимально сочетающие в себе целый ряд качеств: высокую точность и воспроизводимость результатов анализа, высокую чувствительность и, несмотря на эти жесткие требования, доступность аппаратуры и возможность быстрого освоения ее.

Газовая хроматография (ГХ). В основу метода газовой хроматографии положен следующий принцип: анализ смеси веществ в результате распределения компонентов между несмывающимися фазами, одна из которых подвижная — инертный газ (азот, гелий и др.), другая-неподвижная (высококипящая жидкость или твердая фаза).

Этот метод имеет два варианта: газоадсорбционная и газожидкостная хроматография.

Разделение компонентов смеси происходит в хроматографической колонке. Хроматографические колонки: набивные (длина -1-3м, диаметр-около 4мм, материал-стекло сталь и др.) и капиллярные (длина — до 50м,материал-стекло,кварц).

Выбор неподвижной фазы (Нф).Эффективность колонки(способность разделять сложные смеси на отдельные компоненты) зависит от размера частиц, на которые нанесена жидкая фаза. Она возрастает при использовании однородных частиц малого размера. Для стандартных набивных колонок оптимальный размер частиц 0,12-0,17 мм. Необхожимо учитывать их близость к анализируемым соединениям. Для анализа полярных компонентов применяют полярные фазы, для анализа неполярных компонентов — менее полярные или полностью неполярные.

Неполярные фазы для газоадсорбционной хроматографии силикагель, оксид алюминия, цеолиты, полимерные сорбенты ( например, полисорб, поропак и др.).

Наиболее употребляемые неподвижные жидкие фазы для газожидкостной хроматографии карбовакс, силиконовые элястомеры, апиезоны, твердый носитель — хроматов и др. Подвижные фазы азот, гелий, аргон, пары воды.

Детекторы. История развития газовой хроматографии — это история появления и развития детекторов для хроматографии. Применятся несколько типов детекторов.

1. Детектор теплопроводности (ДТП) или катарометр. Принцип его действия основан на различии теплопроводностей анализируемого вещества и газа-носителя.

2. В детекторе ионизационо-пламенном (ПИД или ДИП) ипользуется зависимость электропроводности пространства между электродами от числа находящихся в нем ионизированных частиц, которые образуются в водородном пламени под действием термичесих и окислительных процессов при попадании в него молекул анализируемого вещества. Выходным сигналом детектора является значение силы тока, протекающего между электродами под действиеи приложенного к ним напряжения.

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

3.Электронно-захватный детектор (ЭЗД),или детектор по захвату электронов, как и ДИП ,основан на зависимости электропроводности промежутка между электродами и числим ионов, находящихся в этом промежутке, которое связано с числом молекул, поступающих в детектор. Однако механизм и способ образования ионов принципиально отличаются от такового в случае ДИП — ионы образуются в результате взаимодействия молекул анализируемого вещества и потока электронов в камере детектора в результате бета-распада радиоактивного вещества.

Необходим очень чистый газ-носитель, например азот “ОСЧ”, не содержащий следов кислорода, который снижал бы чувствительность детектора ЭЗД.

Чувствительность определения зависит от наличия галоид-, нитро- и других групп, взаимодействующих с электронами.

Влияние галоидов в молекуле на чувствительность определения

Вещество Чувствиетельность, отн.ед

Дибромметан 1.1 ё0

4. Детектор термоионный (ДТИ) по принципу действия аналогичен ДИП. Однако дополнительно в водородное пламя непрерывно поступает поток ионов щелочных металлов ( калий, натрий, цезий ) В их присутствии резко возрастает эффективность ионизации соединений, содержащих азот, фосфор, хлор и др. ДТИ применяют для определения ФОС и азотосодержащих соединений.

5. Пламенно-фотометрический детектор (ПФД) селективен и обладает повышенной чувствительностью по отношению к соединениям, содержащих серу.

Качественный анализ состоит в сравнении периодов времениудерживания данного вещества на хроматограмме от момента ввода пробы в испаритель до момента, соответствующего максимальному значению сигнала для данного компонента.

Количественный анализ основан на прямо пропорциональной зависимости содержания вещества в пробе от площади пика данного компонента на хроматограмме. Расчет ведется в основном тремя методами.

1. Метод абсолютной калибровки заключается в построении графиков зависимости высоты или площади пика Х от содержани компонентов в смеси. Расчет ведетс по следующим формулам:

a — содержание вещества, определенное по графику; мг

V — объем пробы вохдуха, вводимого в испаритель хроматографа, мл

с — концентрация вещества, расчитанная по графику, мг/мл

V20 — объем пробы воздуха, произведенный в стандартных условиях.

2. Метод внутреннего стандарта основан на введении в анализируемую смесь известного количества вещества, принимаемого за стандарт. По своим свойствам оно должно быть достаточно близко к анализируемым соединениям, но полностью отличаться от них по хроматограмме.

3.Метод норматизации площадей пиков. При этом сумму площадей всех пиков с учетом поправочных коэффицентов принемают за 100%.Для вычисления концентрации вещества (в объемных процентах) необпходимо его площадь умножить на 100 и разделить на сумму всех площадей. Метод прост, но может быть использован лишь тогда, когда все компоненты известны и полностью разделены.

Хроматографы сотоят из основных блоков: Блок подготовки газов, термостат колонок (в том числе испаритель) ,детектор и регистратор (самописец).

Высокоэффективная жидкостная хроматография (ВЭЖХ)- хроматографический метод, позволяющий разделить высококипящие жидкости и (или) твердые вещества, которые затруднительно либо нецелесообразно определять метод газожидкостной хроматографии, например полициклические ароматические углеводороды, аминокислоты, ПАВ, пестициды, лекарственные препараты, углеводы и др.

Хроматограф состоит из:

— колонок из нержавеющей стали, толстостенного стекла, тантала или меди; диаметр-1-6 мм, длина -от 10- 15 см до 7м;

— пористых носителей: силикагель, хромосорб, биосил и др. с

— удельной площадью более 50 м/г и деаметр частиц 0,005-0,05 мм;

— детекторов: рефрактометрической с чувствительностью 10 г/мл, УФ-детектор с чувствительностью 10 и флуориметрический с чувствительностью 10 г/мл, а также электрохимический;

— подвижной фазы:ацетонитрил, метанол и др.

Тонкослойная хроматография (ТСХ). Разделение происходит на специальных пластинках для тонкослойной хроматографии. Неподвижная фаза в ТСХ: силикагель, оксид алюминия, ионообменные смолы с добавками крахмала и гипса.

Читайте так же:  Постановление по делу об административном правонарушении гибдд

Анализируемую смесь наносят на стартовую линию микрошприцем или микропипеткой. Пластинку или бумагу с нанесенной пробой помещают в закрытую камеру, содержащую растворитель, которой перемещается по слою сорбента (или по бумаге) под действием капиллярных сил. Компоненты смеси перемещаются вмемте с растворителем с различными скоростями. По окончании разделения пластинку или бумагу вынимают из камеры, испаряют растворитель, обрабатывая струей теплого воздуха. Определяемые вещества появляются на хроматограмме в виде пятен в результате обработки специальным реактивом (например, нингидрин при анализе аминокислот) или методом флюоресценции. Содержание анализируемого компанента пропорционально площади пятен. Количественную оцнку проводят или непосредственно на пластинке с помощью планиметра, или путем снятия окрашенного пятна с хроматограммы экстракции вещества растворителем и определение и определение его содержание фотометрическим методом или с помощью денситометра.

Ионная хроматография (ИХ). Объединяет принцип ионообменной хроматографии, включающей последовательное использование двух колонок, с кондуктометрическим детектированием. В основе этого метода-элюентное ионообменное разделение ионов на первой (разделяющей) колонке с последующим подавлением фонового сигнала элюента на второй (подавляющей) ионообменной колонке. Инообменные колонки заполняют неподвижными фазами, содержащими в своей структуре ионогенные группы, способные к реакции обмена и обладающие высокой проникающей способностью. При анализе катионов колонку для разделения заполняют сульфированными катионитами низкой емкости ,а подавляющую колонку-анионитом высокой емкости. В качестве элюентов используют растворы HCLl HNO3, гидрохлорида пиридина и др. В качестве подвижной фазы-растовра карбоната и гидрокарбоната натрия.

В последние годы развивается ионная хроматография без подавления фонового сигнала элемента и с различными способами детектирования: фотометрический, атомноабсорбционный, ионометрический (ионселективные электроды).

Достоинства метода: низкий предел определения — 1 10 мг/мл, селективность, возможность одновременного определения неорганических и органических ионов экспрессность, широкий диапазон определяемых концентраций.

Применяют отечественный хроматограф “Цвет-300б”, кондуктометрический детектор, микропроцессор. Предел обнаружения по хлориду натрия — 3,10 мг/мл.

Хроматомасс-спектрометрия (ХМС) — это в сущности газовая хроматография с масс-спектрометром в качестве детектора (например, МИ-1201). Даный метод позволяет расшифровывать состав сложных смесей, содержащих сотни неидетифицированных компонентов, и определять их по одной пробе.

http://mirznanii.com/a/38179/metody-kontrolya-zagryazneniya-okruzhayushchey-sredy

Методы контроля за состоянием загрязнения окружающей среды

Загрязнение – это всё то, что появляется не в том месте, не в то время и не в том количестве, какое естественно для природы, что выводит её системы из равновесия, отличается от нормы, обычно наблюдаемой и (или) желательной для человека.

Загрязнение почв

Поверхностные горизонты почв легко загрязняются. Основные загрязнители почвы:

Стремясь повысить урожаи выращиваемых культур, человек широко применяет удобрения, пестициды, строит оросительные и осушительные системы.

Одним из видов антропогенного воздействия на почву является усиление процессов водной и ветровой эрозии. Эрозия – процесс разрушения и переотложения почвенных частиц воздушными или водными потоками. Эрозия почвы происходит и в естественных условиях, однако она значительно ускоряется вследствие антропогенного воздействия на экосистемы, выражающегося в чрезмерной и неправильной распашке земли, в том числе без учёта рельефа, сведения лесов.

Значительно снижает плодородие почв их засоление — повышение содержания легкорастворимых солей. Наиболее часто засоление вызывается нерациональной системой орошения земель. Почвы считаются засоленными при содержании в них более 0,1 % по массе солей, токсичных для растений.

Значительное загрязнение плодородного слоя почвы и отчуждение сельскохозяйственных земель вызывает складирование и (или) захоронение промышленных и бытовых твёрдых отходов. Огромные площади земель заняты свалками, золоотвалами и др.

Огромный вред для функционирования почв представляют газодымовые выбросы промышленных предприятий. Почва способна накапливать весьма опасные для здоровья человека загрязняющие вещества, например, тяжелые металлы, радионуклиды и радиоизотопы, оседающие из этих выбросов.

Одной из серьезных экологических проблем России становится загрязнение земель нефтью и нефтепродуктами. Причины загрязнения: аварии на нефтепроводах, несовершенство технологии нефтедобычи, аварийные и технологические выбросы и т.д.

Загрязнение воды

Наиболее важными антропогенными процессами загрязнения воды являются стоки с промышленно-урбанизированных и сельскохозяйственных территорий, выпадение с атмосферными осадками продуктов антропогенной деятельности. Эта процессы загрязняют не только поверхностные воды (бессточные водоёмы и внутренние моря, водотоки), но и подземную гидросферу (артезианские бассейны, гидрогеологические массивы), Мировой океан (в особенности акватории и шельфы).

На континентах наибольшему воздействию подвергаются верхние водоносные горизонты (грунтовые и напорные), которые используются для хозяйственно-питьевого водоснабжения. Аварии нефтеналивных танкеров, нефтепроводов могут быть существенным фактором резкого ухудшения экологической обстановки на морских побережьях и акваториях, во внутриконтинентальных водных системах. Отмечается тенденция увеличения этих аварий в последнее десятилетие.

Химическое загрязнение – наиболее распространённое, стойкое и далеко распространяющееся. Оно может быть органическим и неорганическим, токсичным и нетоксичным.

Бактериальное загрязнение выражается в появлении в воде патогенных бактерий, вирусов (до 700 видов), простейших, грибов и др. Этот вид загрязнения носит временный характер.

Радиоактивное загрязнение воды весьма опасно даже при очень малых концентрациях радиоактивных веществ.

Механическое загрязнение характеризуется попаданием в воду различных механических примесей. Механические примеси могут значительно ухудшать органолептические показатели вод.

Тепловое загрязнение связано с повышением температуры вод в результате их смешивания с более нагретыми поверхностными или технологическими водами.

К основным источникам загрязнения поверхностных вод относятся:

Наибольший вред водоёмам и водотокам причиняет выпуск в них неочищенных сточных вод – промышленных, коммунально-бытовых, коллекторно-дренажных и др.

Промышленные сточные воды загрязняют экосистемы самыми разнообразными компонентами (фенолами, нефтепродуктами, сульфатами, СПАВ, фторидами, цианидами, тяжелыми металлами и др.), в зависимости от специфики отраслей промышленности.

Огромны масштабы нефтяного загрязнения природных вод. Миллионы тонн нефти ежегодно загрязняют морские и пресноводные экосистемы при авариях нефтеналивных судов, на нефтепромыслах в прибрежных зонах, при сбросе с судов балластных вод и т.д.

Дата добавления: 2016-03-15 ; просмотров: 751 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

http://helpiks.org/7-41040.html

Методы контроля за состоянием загрязнения атмосферы

Для анализа примесей, содержащихся в атмосфере, применяют приборы, называемые газоанализаторами. Газоанализаторы позволяют получать непрерывные по времени характеристики загрязнения воздуха и выявлять максимальные концентрации примесей, которые могут быть не зафиксированы при методическом отборе проб воздуха по нескольку раз в сутки.

Газоанализаторы различают по типам определяемых примесей (CО2,NО2), принципам действия, диапазону измеряемых концентрации. В этих приборах примеси, содержащиеся в воздухе, взаимодействуют со специальными реагентами. Концентрацию примесей определяют по характеру или показателям интенсивности реакции.

Читайте так же:  Административное наказание лиц ответственность

Региональные инструментальные методы анализа основаны на автоматизированной системе контроля за загрязнением воздуха в промышленном регионе или на нескольких предприятиях. Такая автоматизированная система контроля позволяет получать по каналам связи (телефонным линиям) непрерывную информацию о концентрации примесей. Информация поступает от автоматических газоанализаторов, установленных в различных местах региона или вокруг крупных промышленных объектов, а иногда на конкретных технологических установках.

Информация, полученная по каналам автоматической телефонной сети, в центре сбора выводится на индикационное табло, а затем обрабатывается по специальной программе. Если в отдельных пунктах отмечается повышение концентраций примесей, то по данным о метеорологических параметрах (в частности о силе ветра) можно судить, чем это вызвано, и от какого источника поступают примеси и передать указания о необходимости сокращения выбросов данному источнику.

Особое значение такие системы имеют для территориально-производственных комплексов, включающих многие предприятия различных типов, связанных единым технологическим циклом, сырьевыми, энергетическими и другими транспортными потоками.

Глобальный мониторинг осуществляется в основном зондированием атмосферы. Для этого используют оптическую ирадиолокационную аппаратуру, которая позволяет определить на разных высотах атмосферы такие загрязнения, как СО, CО2, СН4, NО3.

В настоящее время во всём мире повышенное внимание уделяется использованию и разработке лазеров для дистанционного анализа загрязнений атмосферы. Автоматизированные приборы на основе лазеров, выпускаемые серийно, получают всебольшее распространение.

Приборы, представляющие собой сочетание лазера и локатора, называются лидарами.С их помощью изучают пространственное распределение примесей в воздухе. Лазерные аэрозольные спектрометры предназначены дляисследования в автоматизированном режиме содержания аэрозолей в воздухе (как в городах, так и за их пределами).

Лазерные устройства дифференциального сканирования успешно используются для измерения на уровне десяти тысячных долей процента SО2 в движущихся за ветром потоках (хвостах) из труб промышленных предприятий и электростанций.

Все перечисленные системы и методы мониторинга окружающей среды служат для накопления и анализа информации о состоянии природной среды. Данные, полученные этими методами, используются для моделирования процессов в окружающей среде, составления научных прогнозов. На основе научных прогнозов вырабатываются практические рекомендации по совершенствованию охраны природы.

Контрольные вопросы:

1. Как проявляется влияние антропогенного фактора на экологическое состояние окружающей природной среды?

2. Как проявляется влияние производственного фактора на экологическое состояние окружающей природной среды?

3. На скольких уровнях решаются экологические проблемы?

4. Какие экологические проблемы относятся к международному уровню?

5. В чем выражается взаимное влияние экологии и экономики?

6. Перечислите основные виды мониторинга.

7. Для чего и каким образом применяется метод биоиндикации?

8. Для чего используются при мониторинге лидары?

http://helpiks.org/1-115407.html

Методы контроля загрязнения окружающей среды

Неконтактный контроль атмосферы осуществляется с помощью радиоакустических и лидарных методов.

Вначале радиоволны были использованы для анализа состояния ионосферы (по отражению и преломлению

волн), затем сантиметровые волны применили для исследования осадков, облаков, турбулентности атмосферы.

Область использования радиоакустических методов ограничена сравнительно локальными объёмами воз-

душной среды (около 1–2 км в радиусе) и допускает их функционирование в наземных условиях и на борту

Одной из причин появления отражённого акустического сигнала являются мелкомасштабные температур-

ные неоднородности, что позволяет контролировать температурные изменения, профили скорости ветра, верх-

нюю границу тумана.

Принцип лидарного (лазерного) зондирования заключается в том, что лазерный луч рассеивается молеку-

лами, частицами, неоднородностями воздуха; поглощается, изменяет свою частоту, форму импульса, в резуль-

тате чего возникает флюоресценция, которая позволяет качественно или количественно судить о таких пара-

метрах воздушной среды, как давление, плотность, температура, влажность, концентрация газов, аэрозолей,

параметры ветра. Преимущество лидарного зондирования заключается в монохроматичности, когерентности и

возможности изменять спектр, что позволяет избирательно контролировать отдельные параметры воздушной

среды. Главный недостаток – ограниченность потолка зондирования атмосферы с Земли влиянием облаков.

Основными методами неконтактного контроля природных вод являются радиояркостной, радиолокацион-

ный, флюоресцентный. Радиояркостной метод использует диапазон зондирующих волн от видимого до метро-

вого для одновременного контроля волнения, температуры и солёности. Радиолокационный (активный) метод

заключается в приёме и обработке (амплитудной, энергетической, частотной, фазовой, поляризационной, про-

странственно-временной) сигнала, отражённого от взволнованной поверхности.

Для дистанционного контроля параметров нефтяного загрязнения водной среды (площадь покрытия, тол-

щина, примерный химический состав) используется лазерный отражательный, лазерный флюоресцентный ме-

тоды и фотографирование в поляризованном свете.

Флюоресцентный метод основан на поглощении оптических волн нефтью и различии спектров свечения

легких и тяжёлых фракций нефти. Оптимальный выбор длины возбуждающей волны позволяет по амплитуде и

форме спектров флюоресценции идентифицировать типы нефтепродуктов.

Геофизические методы исследований применяются для изучения состава, строения и состояния массивов

горных пород, в пределах которых могут развиваться те или иные опасные геологические процессы. К ним от-

носятся: магниторазведка, электроразведка, терморазведка, визуальная съёмка (фото-, теле-), ядерная геофизи-

ка, сейсмические и геоакустические и другие методы.

В программу наземных инструментальных геофизических наблюдений в системе мониторинга включают-

• районы размещения дорогостоящих, ответственных и особо опасных объектов промышленного и граж-

• промышленные зоны, в которых ведётся добыча полезных ископаемых, откачка (закачка) подземных

вод, рассолов (промышленных стоков), места складирования отходов и т.п.;

• территории, занятые топливно-энергетическими комплексами;

• территории с мульдами оседания земной поверхности;

• территории занятые промышленными предприятиями, на которых выполняются прецизионные работы

в различных сферах производственной деятельности;

• территории с неблагоприятной и напряжённой экологической обстановкой;

• территории расположения уникальных архитектурных сооружений и исторических памятников.

Основным видом непосредственного изучения опасных геологических процессов и явлений является ком-

плексная инженерно-геологическая съёмка (ИГС). Методика комплексной ИГС к настоящему времени доста-

точно хорошо отработана. Сейчас практически вся территория Российской Федерации покрыта государствен-

ной среднемасштабной съёмкой (1 : 200 000; 1 : 100 000 и в ряде случаев 1 : 50 000). Методы получения инже-

нерно-геологической информации в ходе съёмки хорошо разработаны и включают в себя комплекс подготови-

тельных, полевых, лабораторных исследований. В ходе ИГС полевое изучение базируется на традиционных

Читайте так же:  Судья совершил административное правонарушение

маршрутах геологических, топографо-геодезических и ландшафтно-индикационных исследованиях, горнопро-

ходческих и буровых разведочных работах, полевом опробовании горных пород, динамическом и статическом

зондировании и т.д. В этот комплекс работ включаются и специальные аэрокосмические, геофизические, мате-

матические, геодезические, гидрогеологические наблюдения.

С 1990-х гг. в России проводились организационные работы в области экологического мониторинга с ис-

пользованием космических средств, а также формирования инфраструктуры региональных центров сбора и

приёма космической информации. В России существует несколько космических систем дистанционного зонди-

рования территории России, применимых для наблюдений за развитием опасных природных процессов и явле-

ний. Основными и наиболее доступными для использования в ЕГСЭМ из них являются системы дистанционно-

го зондирования «Метеор», «Океан», «Ресурс-0», «Ресурс-2» и др.

Изображения со спутников передаются на Землю в реальном масштабе времени в диапазоне 1700 МГц.

Возможность свободного приёма спутниковой информации наземными станциями обеспечивается Всемирной

метеорологической организацией согласно концепции «Открытого неба».

На наземных станциях приёма спутниковой информации производится приём, демодуляция, первичная

обработка и подготовка спутниковых данных к вводу в персональный компьютер станции.

На территории России в последнее десятилетие активно развивается сеть станций приёма данных от спут-

ников NOAA (американские метеорологические спутники), образующая наземную инфраструктуру региональ-

ного экологического мониторинга: в Москве (Институт космических исследований РАН, ВНИИ ГОЧС МЧС);

Красноярске (Институт леса СО РАН); Иркутске (Институт солнечно-земной физики СОРАН); Салехарде (Гос-

комитет по охране окружающей среды Ямало-Ненецкого автономного округа); Владивостоке (Институт авто-

матики и процессов управления ДВО РАН).

Спутниковые данные дистанционного зондирования позволяют решать следующие задачи контроля со-

стояния окружающей среды:

• определение метеорологических характеристик: вертикальные профили температуры, интегральные

характеристики влажности, характер облачности;

• контроль динамики атмосферных фронтов, ураганов, получение карт крупных стихийных бедствий;

• определение температуры подстилающей поверхности, оперативный контроль и классификация за-

грязнений почвы и водной поверхности;

• обнаружение крупных или постоянных выбросов промышленных предприятий;

• контроль техногенного влияния на состояние лесопарковых зон;

• обнаружение крупных пожаров и выделение пожароопасных зон в лесах;

• выявление тепловых аномалий и тепловых выбросов крупных производств и ТЭЦ в мегаполисах;

• регистрация дымных шлейфов от труб;

• мониторинг и прогноз сезонных паводков и разливов рек;

• обнаружение и оценка масштабов зон крупных наводнений;

• контроль динамики снежных покровов и загрязнений снежного покрова в зонах влияния промышлен-

1.3.3. БИОЛОГИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ

Совершенно очевидно, что оценка экологической обстановки на территории в ходе формирования эффек-

тивной системы государственного экологического мониторинга невозможна без использования методов биоди-

агностики качества окружающей среды.

Оценивать качество окружающей среды, степень её благоприятности для человечества необходимо, преж-

де всего, в целях:

• определения состояния природных ресурсов;

• разработки стратегии рационального использования региона;

• определения предельно допустимых нагрузок для любого региона;

• решение судьбы районов интенсивного промышленного и сельскохозяйственного использования, за-

грязненных территорий и т.д.;

• решения вопроса о строительстве, пуске или остановке определённого предприятия;

• оценки эффективности природоохранных мероприятий, введения очистных сооружений, модернизации

производства и т.д.;

• введения новых химикатов и оборудования;

• создания рекреационных и заповедных территорий.

Ни один из этих вопросов не может быть объективно решён лишь на уровне рассмотрения формальных

показателей, а требует проведения специальной разносторонней оценки качества среды обитания, т.е. необхо-

дима интегральная характеристика её состояния, биологическая оценка.

Прямые (интегральные) методы оценки экологической обстановки в свою очередь тоже можно разделить

Видео (кликните для воспроизведения).

на две группы – биоиндикации и биотестирования (последние называют также токсикологическими метода-

Объектом исследования первых являются организмы или сообщества организмов-биоиндикаторов, на-

блюдаемые в естественных условиях обитания.

Биоиндикаторами называются растительные и животные организмы, наличие, количество и состояние

которых служат показателями изменения качества среды их обитания. Глубина биоиндикации может быть

различной от простой визуальной диагностики растений до изучения иммунных и генетических изменений в

Вторая группа методов изучает реакции тест-объектов – организмов, помещаемых в исследуемую среду.


http://mirznanii.com/a/38179-3/metody-kontrolya-zagryazneniya-okruzhayushchey-sredy-3

Методы контроля загрязнения окружающей среды

Полярография ( и вольтамперометрия). Полярография — одно из элктрохимических методов анализа. Полярограмма — зависимость силы тока от величины приложенного напряжения на электроды.При этом методе не происходит физического разделения смеси на отдельные компоненты.В качестве катода чаще всего применяют ртутный капающий электрод (РКЭ), поверхность которого непрерывна обновляется, что позваляет получать полярограммы и проводить анализ с высокой воспроизводимостью результатов.

Прямое определение возможно лишь при наличие веществ, способных восстанавливаться на РКЭ: ионы металлов, органические соединения, содержащие галоид-, нитро-, нитрозогруппы, карбонильные соединения, пероксиды, эпоксиды, дисульфиды, и т. д.Это несколько ограничевает возможности метода, однако при определение полягрофических активных соединений позволяет достичь высокой слективности определения без предворительнонго разделения сложных смесей на отдельные компоненты.

Основные типы полярографии — постоянно-токовая (классическая) и переменно-токовая.Прследняя имеет различные названия (подразделы): в зависимости от формы амплитуды переменного тока — квадратно-волновая, трапецеидальная и др.; в зависимости от полярности электрода, который используют как индикаторный, — катодная (восстановления) или анодная (окисления). Последнюю иногда называют вольтамперометрия.В анодной полярографии в отличие от катодной используют только твердый электрод (например,графитовый).

Применяют фоноваый или индифферентный электролит (называемый просто — фон), т.е. раствор кислоты, соли, буферный раствор более сложного состава, в котором растворяют анализируемую пробу.

Анализ атмосферного с помощью газоанализаторов (определение SO2,NO,CO и других газов). Газоанолизаторы в отличие от стационарных приборов (хроматографы, полярографы и др.) не позволяют дастигнуть столь же высмокой чувствительности, точности и селективности.Однако при неопходимости оперативного контроля содержания примесей загрязняющих веществ в атмосферном воздухе и особенно в воздухе рабочей зоны и в промышленных выбросах они могут быть полезны и необходимы.Характеристики наиболее применяемых и даступных отечественных газоанализаторов приведены в табл.1.

1.3. МЕТОДЫ И СРЕДСТВА НАБЛЮДЕНИЯ И КОНТРОЛЯ

ЗА СОСТОЯНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ

Для получения объективной информации о состоянии и об уровне загрязнения различных объектов окру-

жающей среды необходимо располагать надёжными средствами и методами экологического контроля. Повы-

шение эффективности контроля за состоянием природной среды может быть достигнуто повышением произво-

Читайте так же:  Административное нарушение штраф сколько

дительности, оперативности и регулярности измерений, увеличением масштабности охвата одновременным

контролем; автоматизацией и оптимизацией технических средств контроля и самого процесса.

Средства экологического наблюдения и контроля подразделяются на контактные, неконтактные (дистан-

ционные), биологические, а контролируемые показатели – на функциональные (продуктивность, оценка круго-

ворота веществ и др.) и структурные (абсолютные или относительные значения физических, химических или

биологических параметров – концентрация загрязняющего вещества, коэффициент суммарного загрязнения и

1.3.1. КОНТАКТНЫЕ МЕТОДЫ КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Контактные методы контроля состояния окружающей среды представлены как классическими методами

химического анализа, так и современными методами инструментального анализа. Классификация контактных

методов контроля приведена на рис. 1.8.

Наиболее применяемые спектральные, электрохимические и хроматографические методы анализа объек-

тов окружающей среды (представлены на рис. 1.9 – 1.11).

Магнит- Масс- Рент-

Спек- Электро- Хромато- спек- тро- спек-

тральные химиче- графиче- тро- метрия траль-

ские ские скопия ный

Рис. 1.8. Структура контактных методов наблюдения и

контроля за состоянием окружающей среды

Жёсткие УФ-видимая Фотометрия Люминес- Методы структурного

излучения спектроско- центные анализа

Нейтрон- Рентге- Эмисси- Атомно- УФ-видимая Флуо- спектроскопия спектро-

ноактива- носпек- онный абсорб- спектроско- ресцент- скопия

ционный траль- спек- ционный пия ный

анализ ный и тральный спек- анализ ЭПР ЯМР

рентге- анализ тральный

минес- ИК- Спектры

центный спектры комбина-

анализ поглоще- ционного

Рис. 1.9. Спектральные методы анализа объектов окружающей среды

Электрохимические методы анализа

Методы без протекания электродной реакции Методы, основанные на протекании электродной реакции

В отсутствии Под действием

Потенцио- Электрохи- Вольтамперо- Амперомет- Кулономет-

метрические мические метрические рическое рические

методы сенсоры методы титрование методы

Рис. 1.10. Электрохимические методы анализа объектов

Хроматографические методы анализа

Подвижная фаза – газ (пар) Подвижная фаза – жидкость

Газовая Газожидкостная Высокоэффективная Тонкослойная

хроматография хроматография жидкостная хроматография

Рис. 1.11. Хроматографические методы анализа загрязняющих веществ

Общая схема контроля включает этапы: 1) отбор пробы; 2) обработка пробы с целью консервации изме-

ряемого параметра и её транспортировка; 3) хранение и подготовка пробы к анализу; 4) измерение контроли-

руемого параметра; 5) обработка и хранение результатов.

Пробоотбор зачастую предопределяет результаты анализа, так как возможно загрязнение пробы в процессе

её отбора, особенно когда речь идёт об измерении ничтожно малых количеств загрязняющего вещества. Здесь

важен и выбор места и средства отбора, и чистота пробоотборников и тары для хранения пробы.

В изолированной от природной среды пробе, начиная с момента её взятия, осуществляются процессы «ре-

лаксации» по параметрам экосистемы, значения которых определяются кинетическими факторами. Одни из

параметров меняются быстро, другие сохраняются достаточно долго. Поэтому необходимо иметь представле-

ние о кинетике изменения измеряемого параметра в данной пробе. Очевидно, чем меньше время от момента

взятия пробы до её консервации (или анализа), тем лучше. И все же лучше в параллельно отобранные пробы

добавить эталон контролируемого загрязняющего вещества и консервировать эти контрольные пробы через

разные временные интервалы. При измерении «эталонных» образцов одновременно можно получить и градуи-

ровочные графики. Такой метод «внутреннего стандарта» желательно использовать и для оценки других факто-

ров, которые могут влиять на результаты анализа (хранение, транспортировка, методика подготовки пробы к

Подготовка пробы к анализу может включать в себя либо концентрирование измеряемого ингредиента,

либо его химическую модификацию с целью проявления аналитически наиболее выгодных свойств. Концен-

трирование достигается двумя путями: методом сорбции анализируемого компонента (на твёрдом сорбенте или

при экстракции растворителем), методами уменьшения объёма пробы, содержащей компонент, например путём

вымораживания, соосаждения или выпаривания. Конечно, любая такая процедура может влиять на результат

анализа, поэтому «внутренний стандарт» необходим.

Эффективность любого метода наблюдений и контроля за состоянием объектов окружающей среды оце-

нивается следующей совокупностью показателей:

• селективностью и точностью определения;

• воспроизводимостью получаемых результатов;

• пределами обнаружения элемента (вещества);

Основным требованием к выбранному методу является его применимость в широком интервале концен-

траций элементов (веществ), включающих как следовые количества, в незагрязнённых объектах фоновых рай-

онов, так и высокие значения концентраций в районах технического воздействия.

1.3.2. ДИСТАНЦИОННЫЕ МЕТОДЫ КОНТРОЛЯ

Контактные методы наблюдений и контроля за состоянием природной среды дополняются неконтактными

(дистанционными), основанными на использовании двух свойств зондирующих полей (электромагнитных, аку-

стических, гравитационных): осуществлять взаимодействия с контролируемым объектом и переносить полу-

ченную информацию к датчику. Зондирующие поля обладают широким набором информативных признаков и

разнообразием эффектов взаимодействия с веществом объекта контроля. Принципы функционирования средств

неконтактного контроля условно подразделяют на пассивные и активные. В первом случае осуществляется

приём зондирующего поля, исходящего от самого объекта контроля, во втором производится приём отражён-

ных, прошедших или переизлученных зондирующих полей, созданных источником.

Неконтактные методы наблюдения и контроля представлены двумя основными группами методов: аэро-

космическими и геофизическими. Основными видами аэрокосмических методов исследования являются оптиче-

ская фотосъёмка, телевизионная, инфракрасная, радиотепловая, радиолокационная, радарная и многозональная

http://mirznanii.com/a/38179-2/metody-kontrolya-zagryazneniya-okruzhayushchey-sredy-2

Методы контроля загрязнения окружающей среды

Полярография ( и вольтамперометрия). Полярография — одно из элктрохимических методов анализа. Полярограмма — зависимость силы тока от величины приложенного напряжения на электроды.При этом методе не происходит физического разделения смеси на отдельные компоненты.В качестве катода чаще всего применяют ртутный капающий электрод (РКЭ), поверхность которого непрерывна обновляется, что позваляет получать полярограммы и проводить анализ с высокой воспроизводимостью результатов.

Прямое определение возможно лишь при наличие веществ, способных восстанавливаться на РКЭ: ионы металлов, органические соединения, содержащие галоид-, нитро-, нитрозогруппы, карбонильные соединения, пероксиды, эпоксиды, дисульфиды, и т. д.Это несколько ограничевает возможности метода, однако при определение полягрофических активных соединений позволяет достичь высокой слективности определения без предворительнонго разделения сложных смесей на отдельные компоненты.

Основные типы полярографии — постоянно-токовая (классическая) и переменно-токовая.Прследняя имеет различные названия (подразделы): в зависимости от формы амплитуды переменного тока — квадратно-волновая, трапецеидальная и др.; в зависимости от полярности электрода, который используют как индикаторный, — катодная (восстановления) или анодная (окисления). Последнюю иногда называют вольтамперометрия.В анодной полярографии в отличие от катодной используют только твердый электрод (например,графитовый).

Читайте так же:  Срок давности исполнительного листа по алиментам

Применяют фоноваый или индифферентный электролит (называемый просто — фон), т.е. раствор кислоты, соли, буферный раствор более сложного состава, в котором растворяют анализируемую пробу.

Анализ атмосферного с помощью газоанализаторов (определение SO2,NO,CO и других газов). Газоанолизаторы в отличие от стационарных приборов (хроматографы, полярографы и др.) не позволяют дастигнуть столь же высмокой чувствительности, точности и селективности.Однако при неопходимости оперативного контроля содержания примесей загрязняющих веществ в атмосферном воздухе и особенно в воздухе рабочей зоны и в промышленных выбросах они могут быть полезны и необходимы.Характеристики наиболее применяемых и даступных отечественных газоанализаторов приведены в табл.1.

1.3. МЕТОДЫ И СРЕДСТВА НАБЛЮДЕНИЯ И КОНТРОЛЯ

ЗА СОСТОЯНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ

Для получения объективной информации о состоянии и об уровне загрязнения различных объектов окру-

жающей среды необходимо располагать надёжными средствами и методами экологического контроля. Повы-

шение эффективности контроля за состоянием природной среды может быть достигнуто повышением произво-

дительности, оперативности и регулярности измерений, увеличением масштабности охвата одновременным

контролем; автоматизацией и оптимизацией технических средств контроля и самого процесса.

Средства экологического наблюдения и контроля подразделяются на контактные, неконтактные (дистан-

ционные), биологические, а контролируемые показатели – на функциональные (продуктивность, оценка круго-

ворота веществ и др.) и структурные (абсолютные или относительные значения физических, химических или

биологических параметров – концентрация загрязняющего вещества, коэффициент суммарного загрязнения и

1.3.1. КОНТАКТНЫЕ МЕТОДЫ КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Контактные методы контроля состояния окружающей среды представлены как классическими методами

химического анализа, так и современными методами инструментального анализа. Классификация контактных

методов контроля приведена на рис. 1.8.

Наиболее применяемые спектральные, электрохимические и хроматографические методы анализа объек-

тов окружающей среды (представлены на рис. 1.9 – 1.11).

Магнит- Масс- Рент-

Спек- Электро- Хромато- спек- тро- спек-

тральные химиче- графиче- тро- метрия траль-

ские ские скопия ный

Рис. 1.8. Структура контактных методов наблюдения и

контроля за состоянием окружающей среды

Жёсткие УФ-видимая Фотометрия Люминес- Методы структурного

излучения спектроско- центные анализа

Нейтрон- Рентге- Эмисси- Атомно- УФ-видимая Флуо- спектроскопия спектро-

ноактива- носпек- онный абсорб- спектроско- ресцент- скопия

ционный траль- спек- ционный пия ный

анализ ный и тральный спек- анализ ЭПР ЯМР

рентге- анализ тральный

минес- ИК- Спектры

центный спектры комбина-

анализ поглоще- ционного

Рис. 1.9. Спектральные методы анализа объектов окружающей среды

Электрохимические методы анализа

Методы без протекания электродной реакции Методы, основанные на протекании электродной реакции

В отсутствии Под действием

Потенцио- Электрохи- Вольтамперо- Амперомет- Кулономет-

метрические мические метрические рическое рические

методы сенсоры методы титрование методы

Рис. 1.10. Электрохимические методы анализа объектов

Хроматографические методы анализа

Подвижная фаза – газ (пар) Подвижная фаза – жидкость

Газовая Газожидкостная Высокоэффективная Тонкослойная

хроматография хроматография жидкостная хроматография

Рис. 1.11. Хроматографические методы анализа загрязняющих веществ

Общая схема контроля включает этапы: 1) отбор пробы; 2) обработка пробы с целью консервации изме-

ряемого параметра и её транспортировка; 3) хранение и подготовка пробы к анализу; 4) измерение контроли-

руемого параметра; 5) обработка и хранение результатов.

Пробоотбор зачастую предопределяет результаты анализа, так как возможно загрязнение пробы в процессе

её отбора, особенно когда речь идёт об измерении ничтожно малых количеств загрязняющего вещества. Здесь

важен и выбор места и средства отбора, и чистота пробоотборников и тары для хранения пробы.

В изолированной от природной среды пробе, начиная с момента её взятия, осуществляются процессы «ре-

лаксации» по параметрам экосистемы, значения которых определяются кинетическими факторами. Одни из

параметров меняются быстро, другие сохраняются достаточно долго. Поэтому необходимо иметь представле-

ние о кинетике изменения измеряемого параметра в данной пробе. Очевидно, чем меньше время от момента

взятия пробы до её консервации (или анализа), тем лучше. И все же лучше в параллельно отобранные пробы

добавить эталон контролируемого загрязняющего вещества и консервировать эти контрольные пробы через

разные временные интервалы. При измерении «эталонных» образцов одновременно можно получить и градуи-

ровочные графики. Такой метод «внутреннего стандарта» желательно использовать и для оценки других факто-

ров, которые могут влиять на результаты анализа (хранение, транспортировка, методика подготовки пробы к

Подготовка пробы к анализу может включать в себя либо концентрирование измеряемого ингредиента,

либо его химическую модификацию с целью проявления аналитически наиболее выгодных свойств. Концен-

трирование достигается двумя путями: методом сорбции анализируемого компонента (на твёрдом сорбенте или

при экстракции растворителем), методами уменьшения объёма пробы, содержащей компонент, например путём

вымораживания, соосаждения или выпаривания. Конечно, любая такая процедура может влиять на результат

анализа, поэтому «внутренний стандарт» необходим.

Эффективность любого метода наблюдений и контроля за состоянием объектов окружающей среды оце-

нивается следующей совокупностью показателей:

• селективностью и точностью определения;

• воспроизводимостью получаемых результатов;

• пределами обнаружения элемента (вещества);

Основным требованием к выбранному методу является его применимость в широком интервале концен-

траций элементов (веществ), включающих как следовые количества, в незагрязнённых объектах фоновых рай-

онов, так и высокие значения концентраций в районах технического воздействия.

1.3.2. ДИСТАНЦИОННЫЕ МЕТОДЫ КОНТРОЛЯ

Контактные методы наблюдений и контроля за состоянием природной среды дополняются неконтактными

(дистанционными), основанными на использовании двух свойств зондирующих полей (электромагнитных, аку-

стических, гравитационных): осуществлять взаимодействия с контролируемым объектом и переносить полу-

ченную информацию к датчику. Зондирующие поля обладают широким набором информативных признаков и

разнообразием эффектов взаимодействия с веществом объекта контроля. Принципы функционирования средств

неконтактного контроля условно подразделяют на пассивные и активные. В первом случае осуществляется

приём зондирующего поля, исходящего от самого объекта контроля, во втором производится приём отражён-

ных, прошедших или переизлученных зондирующих полей, созданных источником.

Неконтактные методы наблюдения и контроля представлены двумя основными группами методов: аэро-

космическими и геофизическими. Основными видами аэрокосмических методов исследования являются оптиче-

ская фотосъёмка, телевизионная, инфракрасная, радиотепловая, радиолокационная, радарная и многозональная

Видео (кликните для воспроизведения).

http://mirznanii.com/a/38179-2/metody-kontrolya-zagryazneniya-okruzhayushchey-sredy-2

Методы контроля за состоянием загрязнения окружающей среды
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here